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Investigation on hydromagnetic convective flow of an incompressible homogeneous viscous liquid over
an accelerated porous plate with suction/injection is presented using Laplace transform technique. The
whole system is in a state of solid body rotation with constant angular velocity about z

0
-axis normal to

the plate. The boundary conditions of the problem are of physical significance and thus the problem
may have some important and interesting characteristic features of hydromagnetic spin up flows. The
effects of suction/injection parameter on the velocity field and of Prandtl number on temperature field
are graphically shown.

� 2009 Published by Elsevier Ltd.
1. Introduction

The study of convective flow through porous media in rotating
system is of immense importance and continuing interest due to
their applications in many industrial, geothermal, geophysical,
technological and engineering applications. Such a study is impor-
tant in the design of turbines and turbo mechanics, in estimating
the flight path of rotating wheels and spin-stabilized missiles. In
addition, such flows are of significance importance to petroleum
engineers to observe the movement of oil and gas through the res-
ervoir; to the hydrologists to study the migration of underground
water and to aero-dynamists to control drag in aero-dynamical
problems. Also rotating heat exchangers are extensively used by
the chemical and automobile industries.

Early investigations of flow and heat transfer in rotating system
are given by Hickman [1], Sparrow and Gregg [2] and Hartnett [3].
The influence of the Prandtl number on the heat transfer on rotat-
ing non-isothermal disks and cones was investigated by Hartnett
and Deland [4]. The effect of the axial magnetic field on the flow
and heat transfer over a rotating disk was considered by Sparrow
and Cess [5]. Kreith [6] investigated the flow and heat transfer in
rotating systems considering various physical situations.

Greenspan [7] has introduced pioneer work on the theory of
rotating fluids. Thornely [8] theoretically investigated Stokes and
Rayleigh layers in rotating systems while Gupta [9] obtained an ex-
act solution of three-dimensional Navier Stokes steady state equa-
tions for the flow past a plate with uniform suction/injection in
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rotating system. Debnath [10,11] has studied magnetohydrody-
namic boundary layer flow and hydromagnetic boundary layer
flow induced by tortional oscillations of a disk, respectively. In
addition, Debnath and Mukherjee [12] have presented an analysis
on unsteady multiple boundary layers on a porous plate in rotating
system considering elliptic harmonic oscillations of the plate.
Kishore et al. [13] have reviewed the problem of Debnath and Muk-
herjee [12] under different boundary conditions wherein the plate
is accelerated with a time dependent oscillatory velocity while Ku-
mar and Varshney [14] have extended the problem of Kishore et al.
[13] for the fluid saturated porous medium under the same bound-
ary conditions.

Tarek et al. [15] have obtained an asymptotic solution of the
flow problem over a rotating disk with a weak axial magnetic field.
Bestman and Adjepong [16] studied the unsteady hydromagnetic
free convective flow with radiative heat transfer in a rotating liquid
but did not consider the effect of heat sink/source, which is of great
relevance to astrophysical and aerospace studies. Recently, Cham-
kha [17] investigated unsteady convective heat and mass transfer
past a semi-infinite permeable moving plate with heat absorption,
where it was found that increase in solutal Grashof number en-
hanced the concentration buoyancy effects leading to an increase
in the velocity. In another recent study Ibrahim et al. [18] investi-
gated unsteady magnetic hydromagnetic micropolar fluid flow and
heat transfer over a vertical porous plate through a porous medium
in the presence of thermal and mass diffusion with a constant heat
source. More recently, Mbelodogu and Ogulu [19] have obtained
analytical closed-form solution of the unsteady hydromagnetic
natural convection heat and mass transfer flow of a rotating
incompressible fluid.

The object of the present investigations is to discuss convec-
tive flow of an incompressible viscous fluid past an accelerated
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Nomenclature

B0 constant magnetic field
Cp specific heat at constant pressure (W m�1 K�1)
E rotation parameter
g acceleration due to gravity (m s�2)
H non-dimensional heat source
K 0T thermal conductivity (W m�1K)
M magnetic parameter
Pr Prandtl number
Q 00 Constant heat source (W m�2)
S non-dimensional suction/injection parameter
t non-dimensional time
T non-dimensional temperature
t
0

time (s)
T
0

temperature (�C)

T 0w temperature at the porous plate (�C)
T 01 temperature of the fluid far away from the plate (�C)
u, v, w velocity component in x, y, z directions
u
0
, v0, w

0
velocity component in x

0
, y

0
, z
0

directions (m s�1)
w00 suction velocity (m s�1)
x
0
, y

0
, z
0

coordinate system (m)
x, y, z non-dimensional coordinate system

Greak symbols
X uniform angular velocity (m s�1)
r electrical conductivity of the liquid
# kinematic viscosity coefficient (m2 s�1)
q density (kg m�3)
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oscillating porous plate embedded in a highly porous medium
subjected to uniform suction/injection under the influence of
uniform magnetic field of low magnetic Reynolds number ap-
plied normal to the flow region. It is considered that the whole
system is in the state of a rigid body rotation normal to the
plate. The solutions for velocity and temperature fields are ob-
tained in terms of complementary error function [Mclachlan
[20]] and discussed with the help of graphs. Since the rotation
increases magnitude of the secondary flow and the magnetic
field decreases it, the magnetic field plays an important role in
retarding the growth of the secondary flow as well as in reduc-
ing the heat transfer rate.

2. Formulation of the problem

In Cartesian coordinate system (x
0
, y

0
, z

0
), we consider unstea-

dy laminar, non-dissipative, incompressible boundary layer heat
transfer by convective axisymmetric flow of an electrically con-
ducting and heat generating or absorbing fluid past an acceler-
ated oscillating porous plate in porous medium. The x

0
-axis and

y
0
-axis are in the plane of the plate and z

0
-axis normal to it with

velocity component (u
0
, v0, w

0
) in these directions, respectively.

The whole system is in a rigid body rotation about z
0
-axis, i.e.,

normal to the plate with uniform angular velocity X. Initially,
when time t

0
6 0, the plate and the fluid are at rest and at the

same temperature T 01. At time t
0
> 0, the plate is accelerated with

a velocity Kt0meix0t0 , such that a non-tortional oscillation of a gi-
ven frequency x

0
is imposed on the plate for generation of un-

steady flow and the temperature of the plate is
instantaneously raised to T 0w and thereafter maintained constant
so that the temperature T 0w is independent with the distance x.
Since uniform suction is normal and acts towards the plate,
w
0
= �w0 so that w0 > 0 for suction and w0 < 0 for injection. A

uniform magnetic field of strength B0 is applied in the z
0
-direc-

tion (normal direction). The magnetic Reynold number (Re-
m = lerVL << 1, where le and r are the magnetic permeability
and the electrical conductivity and V, L are the characteristic
velocity and length, respectively) is assumed to be small so that
the induced magnetic field is negligible in comparison to the ap-
plied magnetic field. Since there is no applied or polarization
voltage imposed on the flow field, the electric field E

!¼ 0
!

,
hence Maxwells’ equations are uncoupled from the Navier–
Stokes equations [Cramer and Pai [21]] and the only contribution
of the magnetic field is the Lorentz force in the absence of Hall
effect.

Under the present configuration and ignoring Boussinesq
approximation, the equations governing the flow are:
Momentum equations:

@u0

@t0
�w00

@u0

@z0
� 2Xv 0 ¼ #@

2u0

@z02
� #

k0
u0 � rB2

0

q
u0 ð1Þ

@v 0
@t0
�w00

@v 0
@z0
þ 2Xu0 ¼ #@

2v 0

@z02
� #

k0
v 0 � rB2

0

q
v 0 ð2Þ

Energy equation:

@T 0

@t0
�w00

@T 0

@z0
¼ K 0T

qCp

@2T 0

@z02
� Q 00

qCp
T 0 � T 01
� �

ð3Þ

The initial and boundary conditions relevant to the problem are:

t0 � 0 : u0 ¼ 0; v 0 ¼ 0; T 0 ¼ T 01 for all z0

t0 > 0 : u0 ¼ U0t0m 1þ 2 eix0t0� �
;

v 0 ¼ 0; T 0 ¼ T 0w at z0 ¼ 0
u0 ! 0; v 0 ! 0; T 0 ! T 01 as z!1

ð4Þ

We now introduce the following non-dimensional quantities:

u ¼ u0

U0
v ¼ v 0

U0
; z ¼ z0U0

#
; t ¼ Xt0; x ¼ x0

X
;

M1 ¼ M þ k0K ¼ X�m; T ¼ T 0 � T 01
T 0w � T 01

Introducing above mentioned non-dimensional quantities and
using q = u + iv, the Eqs. (1)–(3) transform to following form:

@2q
@z2 þ S

@q
@z
� M1 þ iEð Þq ¼ E

2
@q
@t

ð5Þ

Pr
E
2
@T
@t
¼ @

2T
@z2 þ PrS

@T
@z
� HEPr

2
T ð6Þ

The non-dimensional initial and boundary conditions (4) transform
to:

t � 0 : q ¼ 0; T ¼ 0 for all z
t > 0 : q ¼ Keiwttm; T ¼ 1 at z ¼ 0

q! 0; T ! 0 as z!1:
ð7Þ

Where

S¼w00
U0
ðSuction parameterÞ; E¼2X#

U2
0

ðRotation parameterÞ;

H¼ Q 00
qCpX

ðHeat sink parameterÞ; Pr¼lCp

K 0T
ðPrandtl numberÞ and

M¼ B0

U0

ffiffiffiffiffiffiffi
r#
q

s
ðMagnetic parameterÞ
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3. Solution of the problem

Laplace transform of Eqs. (5), (6) yield:

d2�q

dz2 þ S
d�q
dz
� iEþM1 þ

pE
2

� �
q ¼ 0 ð8Þ

d2T

dz2 þ SPr
dT
dz
� HEPr

2
þ pEPr

2

� �
T ¼ 0 ð9Þ

where �q z;pð Þ ¼
R1

0 e�ptq z; tð Þdt and T z;pð Þ ¼
R1

0 e�ptT z; tð Þdt.
Laplace transform of boundary conditions (7) yield:

�q z;pð Þ ¼ K
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðmþ 1Þ

p
ðp� iwÞmþ1 ; T ¼ 1

p
at z ¼ 0

�qðz;pÞ ¼ 0; T ¼ 0 as z!1
ð10Þ

Solutions of (4) and (5) satisfying the boundary conditions (10) are:

�q z;pð Þ¼K
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðmþ1Þ

p
ðp� iwÞmþ1 exp

�zS
2
�z

ffiffiffi
E
2

r
pþS2þ4iEþ4M1

2E

 !1=2
2
4

3
5 ð11Þ

T z;pð Þ¼1
p

exp
�zSPr

2
�z

ffiffiffiffiffiffiffiffi
EPr
2

r
pþS2Pr2þ2HEPr

2HEPr

 !1=2
2
4

3
5 ð12Þ

Inverting Eq. (11) by Fourier–Mellin inversion integral, we obtain:

q z;tð Þ¼K
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðmþ1Þ

p
exp �zS

2

� �
1

2pi

�
Z kþi1

k�i1
exp pt�z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E
2

pþS2þ4 iEþM1ð Þ
2E

 !vuut
2
4

3
5 dp

ðp� ixÞmþ1

ð13Þ

Introducing X ¼ z
ffiffi
E
2

q
; X1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pþ S2þ4 M1þiEð Þ

2E

q
and a ¼ ixþ S2þ4 M1þiEð Þ

2E

in (13) we obtain:

qðz; tÞ ¼ K
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðmþ 1Þ

p
exp � zS

2

� �
FðX1;a;mÞ ð14Þ

where F X1;t;a;mð Þ¼ 1
2pi

R
Br2

exp X2
1�

S2þ4 M1þiEð Þ
2E

n o
t�XX1

h i
2X1

X2
1�að Þmþ1 dX1

and the path Br2 is Bromwich path defined in Mclachlan [20].
To obtain the value of F X1; t;a;mð Þ for different values of m, let

G að Þ ¼ F X1;a;0ð Þ ¼ 1
2pi

Z
Br2

exp X2
1 �

S2 þ 4 M1 þ iEð Þ
2E

( )
t � XX1

" #

� 2X1

X2
1 � a

� �dX1 ð15Þ

Differentiating (15) with respect to a, we get:

F X1; t;a;1ð Þ ¼ dG að Þ
da

þ tG að Þ ¼ d
da

F X1; t;a; 0ð Þ½ � þ tF X1; t;a;0ð Þ

ð16Þ

Differentiating (16) successively (m � 1) times with respect to a, we
get:

F X1; t;a;mð Þ ¼ d
da

F X1; t;a;m� 1ð Þ½ � þ tF X1; t;a;m� 1ð Þ ð17Þ

which gives F X1; t;a;mð Þ for different integral values of m.
Using Mclachlan [20], (15) yields:

F X1; t;a;0ð Þ ¼ 1
2

exp ixtð Þ exp X1
ffiffiffi
a
p� �

erfc
X1

2
ffiffi
t
p þ

ffiffiffiffiffi
at
p� �	 


þ 1
2

exp ixtð Þ exp �X1
ffiffiffi
a
p� �

erfc
X1

2
ffiffi
t
p �

ffiffiffiffiffi
at
p� �	 


ð18Þ
Introducing (18) in (16), we obtain:

F X1;t;a;1ð Þ¼1
2

exp ixtð Þ exp X1
ffiffiffi
a
p� �

erfc
X1

2
ffiffi
t
p þ

ffiffiffiffiffi
at
p� �

X1

2
ffiffiffi
a
p þ1

� �	 


þ1
2

exp ixtð Þ exp �X1
ffiffiffi
a
p� �

erfc
X1

2
ffiffi
t
p �

ffiffiffiffiffi
at
p� �

X1

2
ffiffiffi
a
p �1

� �	 

ð19Þ

Similarly we can obtain F X1; t;a;2ð Þ and in general F X1; t;a;mð Þ.
Using Mclachlan [20], the inverse Laplace transform of (12) in

terms of complementary error function is:

T z; tð Þ ¼ G Z1; Z2; Z3; Z4ð Þ ð20Þ

where G Z1;Z2;Z3;Z4ð Þ¼exp �zSPr
2

� �
1
2exp Z1

ffiffiffiffiffiffiffiffiffiffi
Z2Z3
p� �

erfc Z1Z2

2
ffiffiffiffi
Z4

p þ
ffiffiffiffiffiffiffiffiffiffi
Z3Z4
p� �	

þ1
2exp �Z1

ffiffiffiffiffiffiffiffiffiffi
Z2Z3
p� �

erfc Z1Z2

2
ffiffiffiffi
Z4

p �
ffiffiffiffiffiffiffiffiffiffi
Z3Z4
p �� 


Z1 ¼ z

ffiffiffiffiffiffiffi
EPr

2

r
; Z2 ¼ 1; Z3 ¼

S2Pr2 þ 2HE
2HE

and Z4 ¼ t
4. Discussion and conclusions

The problem of convective heat transfer to unsteady hydromag-
netic flow involving heat source/sink past a porous plate in rotating
system is addressed in this study. Solution of the equation of com-
plex velocity (5) is obtained by the use of Laplace transform fol-
lowed by Fourier–Mellin integral (Mclachlan [20]], while solution
of the energy Eq. (6) is obtained by Laplace and inverse Laplace
transform technique. Numerical calculations have been carried
out for variations in non-dimensional complex velocity and tem-
perature distribution due to change in any one parameter for fixed
values of the remaining parameters. The effects of magnetic
parameter (M), rotation parameter (E), suction–injection parame-
ter (S) and permeability parameter (k) are observed on complex
velocity and also the effects of rotation parameter (E), heat
source/sink parameter (H), suction/injection parameter (S) and
Prandtl number (Pr) are noted on temperature distribution. Since
the solution obtained for velocity is complex, only the real part
of the complex quantity is invoked for numerical discussion fol-
lowing Abramovitz and Stegun [22]. Values of the frequency of
oscillation (x) and time (t) are fixed and non-zero; so in all cases,
a non-tortional oscillation of a given frequency imposed on the
accelerated porous plate is studied throughout the flow regime.
To be realistic, the numerical values of Prandtl number (Pr) are
chosen to be Pr = 0.71, Pr = 7.0 and Pr = 11.4, which, respectively,
correspond to air, water at 20 �C and water at 4 �C and one atmo-
spheric pressure. The numerical values of the remaining parame-
ters, although chosen arbitrarily, are in agreement with the
researchers of the field. In rotating system, the fluid near the axis
of rotation is forced outward in the vertical direction due to the ac-
tion of the centrifugal force. The fluid is then replaced by the fluid
moving in the axial direction. Thus the axial velocity in rotating
system is more than that in stationary system. This increase in
the axial velocity enhances the convective heat transfer. As such,
this principle has been used to develop practical systems for
increasing heat transfer, e.g., the utility of rotating condensers for
two sea-water distillation and space-craft power plants in a zero-
gravity environment [Hickman [1], Sparrow and Cess [5]].

Fig. 1 illustrates variations in the representative velocity pro-
files versus z for various values of suction (S > 0) and injection
(S < 0) parameter in the range (�2.0 6 S 6 2.0) for fixed values of
M = 0.0, E = 0.0, K = 10, T = 1.0 and x = 1.0. The curve I represents
velocity for no suction, i.e., when S = 0.0. As suction is increased
from S = 0 to S = 2.0 (curve I, curve III) via S = 1.0 (curve I), the
velocity is decreased, but as injection is increased from S = 0.0 to
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Fig. 1. Velocity profiles showing the effect of suction/injection.
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S = �2.0 (curve I, curve V) via S = �1.0 (curve IV), the velocity is in-
creased. A decreasing trend in the velocity occurs as z increases.
Hence, suction/injection has dominant effect in controlling the
velocity. This result is consistent with the study of Debnath
[10,11].

Fig. 2 depicts variations in velocity versus distance z for various
values of magnetic parameter (M) in the range (0.0 6M 6 1.5) for
S = 0.0, E = 0.0, K = 10, T = 1.0 and x = 1.0 fixed values. Curve I
shows the representative velocity profile for M = 0, i.e., when no
magnetic field is present. As M is increased from M = 0 to M = 1.5
(curve I, curve III), the velocity decreases. Since there is no applied
or polarization voltage imposed on the flow field, the only contri-
bution of the magnetic field is the Lorentz force in the absence of
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Fig. 2. Velocity profiles showing the effect of magnetic parameter.
Hall effect. Hence, the hydromagnetic drag, embodied in the term
�M1Q in Eq. (5), retards the velocity, consistent with many other
studies [Tarek et al. [15]].

Fig. 3 shows variations in velocity versus z-coordinate for vari-
ous values of rotation parameter (E) in the range (0.0 6 E 6 3.0) for
fixed values of S = 0.0, M = 0.0, K = 10, T = 1.0 and x = 1.0. Curve I
represents the velocity when there is no rotation. As E is increased
from E = 0 to E = 3.0 (curve I, curve IV) through E = 1.0 and E = 2.0
(curve II, curve III), the velocity is increased rising from z = 0 to a
peak approximately at z = 0.5, and then smoothly decreasing to-
wards the z-axis. Clearly, the fluid near the surface of the plate is
forced outward due to the action of the centrifugal force produced
by the rotation; so that the velocity of the fluid is increased in the
vicinity of the plate. This finding is in agreement with Kreith [6]
and Kishore et al. [13].

In Fig. 4, the profiles for velocity versus z have been plotted for
various values of permeability parameter (k) and for fixed S = 0.0,
E = 0.0, M = 0.0, T = 1.0 and x = 1.0 values. Obviously, as permeabil-
ity parameter (k) is increased from K = 10 to K = 100 via K = 50, the
velocity u increases. This explains the fact that as k increases; the
resistance of the porous medium is lowered, which increases the
momentum development of the flow regime, which in turn en-
hances the velocity field.

Fig. 5 depicts the temperature distribution versus span wise
coordinate z for Pr = 0.71 (air), Pr = 0.025 (mercury), Pr = 1.0 (elec-
trolyte solution), Pr = 7.0 (water at room temperature and Pr = 11.4
(water at 4 �C) and one atmospheric pressure for S = 0.0, E = 0.0,
H = 0.0, T = 1.0 and x = 1.0 fixed values. The temperature is ob-
served to decrease steeply and exponentially away from the porous
plate. This observation agrees with Kim [23], where it is observed
that this decrease in the temperature and temperature boundary
layer is accompanied with a more uniform temperature distribu-
tion across the boundary layer.

Fig. 6 represents the temperature profiles for various values of
the suction (S > 0) and injection (S < 0) parameters against z
(�2.0 6 S 6 2.0) for fixed values of Pr = 0.71, E = 0.0, H = 0.0,
T = 1.0 and x = 1.0. Curve I represents the temperature profile
when no suction/injection exists in the flow field. It is noted that
suction retards the temperature (curve II, curve III), while injection
increases the temperature (curve IV, curve V).
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Fig. 7 illustrates the profiles of temperature distribution for var-
ious values of heat sink (H > 0) and heat source (H < 0) parameters
in the range (�1.0 6 H 6 1.0) for fixed Pr = 0.71, E = 0.0, S = 0.0,
T = 1.0 and x = 1.0. Curve I shows the profile of temperature distri-
bution in absence of heat sink/source. Heat sink (source) physically
implies absorption (evolution) of heat from the surface, which de-
creases (increases) the temperature in the flow field. Therefore, as
heat sink parameter is increased, the temperature decreases stee-
ply and exponentially from the plate but heat source parameter en-
hances it.

Finally, Fig. 8 shows variations in the temperature field for var-
ious values of the rotation parameter (E) for fixed Pr = 0.71, H = 0.0,
S = 0.0, T = 1.0 and x = 1.0. It is noted that as rotation is increased,
the temperature is increased in the vicinity of the plate and then
decreases smoothly. However, higher values of the rotation param-
eter decreases the temperature more rapidly in comparison to the
lower values.

The conclusions of the study are as follows:

(i) An increase in suction decreases the velocity field while
injection increases the velocity.

(ii) An increase in magnetic field decreases the velocity field.
(iii) An increase in rotation parameter increases the velocity.
(iv) An increase in permeability parameter increases the velocity

field.
(v) An increase in Prandtl number decreases the temperature

field.
(vi) An increase in rotation parameter increases the temperature

field
(vii) An increase in heat sink parameter decreases the tempera-

ture field, while heat source enhance it.



0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

0.0 0.3 0.6 0.9 1.2 1.5 1.8
z

Τ

Curve
I
II
III
IV

E
0.0
1.0
2.0
3.0

III

IV

II

I

Fig. 8. Temperature field showing the effect of rotation parameter.
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(viii) An increase in suction decreases the velocity field, while
injection increases it.

(ix) An increase in suction parameter results in a reduction in the
temperature field, while injection up lifts it.
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